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Abstract

There are several approaches to determine Schottky barrier heights. Mostly,
properties of the free surfaces were used to predict this quantity. In other the-
ories the Schottky barrier height is related to characteristics of the semicon-
ductor only. The shortcomings connected with these procedures are discussed
and illustrated numerically. A general theory for the Schottky barrier height is '
presented allowing for a deeper understanding of Schottky barrier formation.
Using this theory (i) the influence of doping on the barrier height is treated
more straightforwardly than before. Then, (ii) it is shown why previous the-
ories failed to predict the dependence of the barrier height on the metal even
for ionic semiconductors, and (iii) it is explained why theories calculating the
barrier height directly from the semiconductor band structure are successful
mainly for the noble metals. (iv) In addition the formation of Ohmic contacts
is considered.

1. Introduction

The metal-semiconductor contact was the first semiconductor interface which got technological
importance resulting in a large number of papers on Schottky barrier formation (for reviews see
[1,2,3,4]). The first theoretical models were given by Schottky [5] and Mott [6]. Both authors
stated that the rectifying behaviour of the contact is caused by a space-charge layer connected
with the occurence of a band bending and a corresponding barrier for the charge carriers as a
result of the initial equalizing of the chemical potentials during the formation of the contact. But
measured barrier heights are not influenced by the metal as much as supposed by these early
theories. According to Bardeen [7] this stabilization can be traced back to intrinsic surface states
of the semiconductor. On the other hand, Heine [8] stressed that true surface states do not exist
at the metal-semiconductor interface. They are changed by tailing off the metal wavefunctions
into the semiconductor band gap. Heine's fundamental idea was further developed by Yndurain
[9], Tejedor, Flores & Louis [10], Louie, Chelikowsky & Cohen [11], Tersoff [12], and others.

Stimulated by new experimental observations especially since 1977 there is an increasing interest
especially in the interface charge redistribution on an atomic length scale. In particular, high
reactivities, interdiffusion between the metal and the semiconductor, and induced defect centers
at the semiconductor side were suggested to determine the Schottky barrier height alone [I]. The
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discussion on the origin and the nature of the microscopic interface charges is still in progress.
However, metal induced gap states do exist in any case. In addition, besides this microscopic
charge redistribution there is a band bending in the semiconductor. This band bending also
contributes to the total interface dipole which is built up at the interface in order to achieve equi-
librium. This was clearly depicted by Cowley & Sze [13] already in 1965. So, the decomposition
of the total interface dipole into a microscopic contribution and the band bending turns out to be
the most serious problem in determining Schottky barrier heights. However, another problem, the
calculation of the magnitude of the required total interface dipole, determined by the equilibrium
condition was not solved completely. This also holds for the hitherto most fundamental theory of
Duke & Mailhiot [14].

In this paper we present an equilibrium condition being both exact and applicable. From this
condition the total interface dipole can be calculated without the need of utilizing the jellium
model and without using surface properties (Section 2). Contrary, in the literature the interface
dipole is always determined using surface properties which in fact are absent at the interface.
We discuss the problems connected with this procedure. In addition, theories [12] calculating the
barrier height directly from the semiconductor band structure are examined critically. In Section 3
the equilibrium condition is related to the barrier height. The band bending and the microscopic
dipole layer contributions to the total interface dipole are coupled due to the semiconductor gap
states. Then a new expression for the barrier height is derived and related to those known from
the literature. In Section 4 the influence of doping is analysed, and in Section 5 the influence of
the metal on the barrier height is dicussed in detail. In Section 6 the formation of Ohmic contacts
is considered. The results presented here show the importance both to correctly account for the
equilibrium condition and to determine the interface dipole directly from the bulk charge densities
and not using surface quantities.

2. Equilibrium condition

As the starting point we consider a unique system consisting of two half infinite solids. The
difference in (electro-) chemical potentials has to be equalized by the charge transfer resulting
in thermodynamic equilibrium. Hence, the initial difference in chemical potentials is equal to
the interface dipole Po arising from this charge transfer. But the (electro-) chemical potential
depends on the energy zero and the problem is to find out the appropriate reference level for the
chemical potentials. In principle this is known for a long time. Nevertheless, the theory is not
well established as will be shown here. Having two solids with real surfaces the initial difference
in chemical potentials is given by the contact potential uk defined as the difference of the work
functions. But the contact potential is not suitable for describing the charge transfer producing
the contact properties because the work functions contain surface dipoles which are absent at the
contact [7,8,9]. So, one ha.s to remove the surface dipoles before calculating the "initial" difference
in chemical potentials [10,14].

For one half infinite solid the charge distribution without the surface dipole is a cut off (total)
bulk charge density Qcj(O = Q(t) %co _ ") where Q(j') is the charge density of the infinite
system. After parallel averaging the cut off density has an electrostatic potential that is bulk-like
inside and which has to be constant outside the cut-off plane z = zco· Therefore, just this cut-off
potential represents the appropriate reference level necessary to determine the initial difference in
chemical potentials [15]. Hence, we have to calculate the chemical potential relative to the cut-off



potential Pco outside:

µb = µ _ 'Pco " (2.1)

The definition of the chemical potential µb is unique only for a unique definition of the cut-off

plane zco. It will be shown here that zco is determined by the bulk charge density Q(j') alone.
First, all charge densities are averaged parallel to the interface (mathematical the :t — y—plane).
Let a be the periodicity length of the bulk density in z—direction. Then the bulk density 0(") has
the following properties for all z:

Z
/ d"' q("') = 0 , 'p(") = 'p(" — a) . (2.2)

Z — a

Thus, the neutrality requirement alone does not fix zco· However, using (2.2) and Poisson's
equation one obtains that the potential 'Pco = 'p(z > ZCo) outside the cut off density Qco(z) =
Q(Z) E)(zco _ Z) is constant only if the first moment of the bulk density e(z) vanishes:

ZCO

/ dz Z Q(Z) = 0 . (2.3)

ZCO " a

The cut-off plane zco is uniquely determined by (2.3) for a given surface orientation and possibly
a given top atomic layer for a more complicated crystal structure. Having determined the cut-off
plane zco using (2.3) one can calculate the cut-off potential 'Pco· Its value relative to the averaged
bulk electrostatical potential < 'p(z) > will be denoted by

ZCO

LJ"Pco,a zz 'Pco _ < 'P > with <'7>= ! / dz 'p(z) · (2.4a)
a

ZCO " a

and equals
ZCO

'M'co,a = " 2Eeo a ZCO/ a dz Z2 Q(Z) > 0 (2.4b)

where (2.2) (2.3) were used. The sign of ^Pco, a in (2.4b) arises from the fact that the positive

ionic charge is more localized than the electron density. Now one can rewrite (2.1) as

µb = µ — A'p,o, a (2.5a)

with

ji" µ-<p> (2.5b)

being a pure bulk property. Hence, the chemical potential relative to the potential outside the cut
off density µb can be calculated from bulk properties using (2.3) to (2.5).

In order to calculate the chemical potentials µf for semiconductors (lower index "s") besides

(2.5a) a further splitting of this quantity is advantageous. The energetic distance of the chemical
potential from the conduction band edge in the bulk

C zz ec — µ = e,) + Eg — µ (2.6)

depends strongly on temperature and doping. Together with (2.6) one obtains for (2.1)

µ! = "! + E, - C (2.7a)
where



't = 'U - 'P,, (2.7b)

is the valence band edge relative to the cut-off potential. In (2.7a) doping and temperature
influence mainly C alone. So, the quantity Ej is analogue with the volume contribution µf, of

metals (lower index "m") with respect to its calculation: No gap problem of the density functional

theory occurs in determining the band structure and no doping influences the result. Beyond that
the definition of €t will be very helpful later. Frensley & KrOmer [16] calculated the valence band

edges relative to the mean interstitial electrostatic potential <k = eu — ij7. As a rough estimate

ij7 0± 'Pco can be used and hence one has
r

'! = ':" = 'u " ij7 ' (2.8)
It should be mentioned that the original idea of Frensley & KrOmer giving rise to calculate <k

is very different from the derivation given above.

Now we turn back to contacts. The total system in equilibrium consists of two sticked cut off
densities Qco, s (Z) and Qco, m (z) and the interface dipole layer charge density 6eo(z):

eo(z) = '5qo(z) + Qco,s(z) + eco,m(z) (2.9a)

with

Qco, S(z) = Qs(z) %co, s " Z) (2.9b)

Qco, m (Z) = em (Z) €l(z _ zco, m) ° (2.9c)

(The semiconductor is situated within the left half space (z < 0), and the metal is on the right
hand side (z > D)). Before equilibrium is reached (6qo = 0) the difference in chemical potentials
of the two solids is given by the difference of their volume contributions µb since the boundary

condition for the electrostatic potential requires Pco, s = 'Pco, m (Fig. la). This difference has to

be compensated by the interface dipole (Fig. lb)

P, = -µi + µ! (2.10)

connected with the occurence of the deviation 6qo(z) of the total charge density from the sticked
cut off density by

+CXJ

P, - ,', _L dz 6q, z . (2.11)

Eqs. (2.9) to (2.11) represent the equilibrium condition. In addition mechanical equilibrium has

to be taken into consideration. But this influences contrary to the jellium calculation of Mailhiot

& Duke [17] only the shape of the charge transfer 6qo(z) and the position of the ions in the semi-
conductor relative to the ions in the metal and not the value of Po. Reconstructions (if any) have

to be considered calculating ®0(") whereas Po is fixed by the bulk systems including interface

orientations (and top layers).

From (2.10) and (2.7a) one obtains a new equation for the interface dipole:

P, = -l'j " '$. + E, - c . (2.12)



Whereas C depends strongly on doping and temperature, the gap Eg is a volume property, and

µSl and €t depend on the respective value of 'Pco and hence on the orientation of the interface,

but they are completely determined by the two bulk electronic structures. This interface dipole
is realized as follows. At the interface there will be a charge redistribution on an atomic length
scale producing a microscopic contribution Do. But due to the possibility of charged interface
states one has in addition a space-charge layer with an extension of the Debye screening length
1d >> ao (ao: Bohr radius). Its total band bending Vj also contributes to Po:

Po = V, + D,, . (2.13)

This equation together with (2.12) represent the equilibrium condition for metal-semiconductor
contacts keeping in mind both (2.9) and (2.11). (According to (2.11) the band bending is positive
if the bands are bent upwards.)

! @O,S P:o,m !

- i b iµ17l

/u: "

1 ' ! r/u' ZcqS Z,,,m a

~
F,

V

b
r

,r
(

I
I
(
I "rI \b j·4,

" \

\

I I

\,, .,J ,
C~i

Fig. I: Electrostatic potentials (a) of the two cut off densities Qco, s and Qco, m) (b) of the

interface dipole layer charge density 6eo, and (C) of the total charge density Qo in thermodynamic
equilibrium. - (Note that in this picture, contrary to Schottky contacts, the density '5qo is extended

only microscopically.)

At the end of this section three approaches ,of the literature will be discussed. At first, in the

literature [5,13] often the difference of the work functions

"K = ¢m - 0, (2.14)
is used instead of Po. Here the surface dipoles are neglected (see below). The correct splitting of
the work function ¢ into surface dipole P and volume contribution is given by [IB]

cb = p - µb . (2.15)

Inserting (2.15) into (2.10) one obtains



Po = ¢m _ ¢s _ Pm + P, · (2.16)

But this equation is valid only if the surface orientations at the free surface and at the contact
are the same in each case. Sometimes [10,17] (2.16) is used to determine Po. But then three
interfaces have to be analysed. This introduces additional difficulties which are absent in the
direct calculation of Po presented above (see Section 5 for more details). The interface dipole was
also written as [14,17]

Po = -En + ji, (2.17)

which is valid for the jellium model only. A correct and complete description of the interface dipole
including a correct definition of reference levels for the chemical potentials and a description of
the charge densities causing the quantities involved was missing in the past. With the eqs. (2.3)
to (2.5) and (2.7) one can calculate Po from bulk properties without the restriction on the jellium
model.

3. The Schottky barrier

At metal-semiconductor contacts one is interested in the relative position of the band structures
of the two materials near the interface (z z 0). Mostly, the chemical potential lies within the
band gap at a distance ¢'0 above the valence band edge. ¢0 is given by (Fig. 2)

Eg - G = V, + q5, . (3.1)

The Schottky barrier according to the methods to measure it [4,19] is the minimum energy for an
electron on the metal side to cross the interface into the bulk of the semiconductor. In the case
of depletion layers (with monotoneous band bending) the barrier is determined by ¢'0. For n-type
semiconductors (Fig. 2) the barrier is just

¢1, = Eg - e, = C + V, (3.2)

whereas for p-material one has

< = « = Eg - Cp - v,p , (3.3)

?ut the barrier measured via transport is lowered both for electrons and holes due to the image
Lorce correction ^Jim [4]. The most serious theoretical problem is the decomposition of the

interface dipole Po (2.12) into the two contributions V) and Do (2.13) since only V) enters the
barrier (3.2). This does not change if V) in, (3.2) is replaced by Do using (2.12) (2.13) giving

¢1, = Eg - e, = -µ$ + '! + Eg - D,

since V) and Do are coupled as will be discussed in the following. Before doing
that the incompatibility of the two length scales for V,) and Dq caused sometimes
graphical representations of the contact in the literature [1,10,13]. Whereas Do can
as a part of the crystal potential, V) is a macroscopic potential drop.

(3.4)

this we note
confusion in-
be seen only

Any shift of the position ¢'0 of the chemical potential within the gap (due to a change of the
band bending, cf. (3.1)) leads to a change of the charge of the gap states. So, the microscopic
contribution Do and the band bending V) (or ¢0) are coupled. Formally, one can expand Do as

Do = Don — a ( ¢'0 _ ¢n ) + · ·· (3.5)



where the index "n" denotes a situation deviating slightly from the actual equilibrium condition.
By conviniently defining this state the linear expansion coefficient a can be determined. It is
assumed that the state "n" is realized if the exponentially decaying semiconductor gap states
are occupied (up to the level ¢n ) such that the lack of valence band states due to the boundary
condition is compensated (local neutrality, see [20]). According to Tejedor, Flores & Louis [10]
Don = De originates in the smooth matching of the valence band states.

E, Tk ¢,
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Fig. 2: Energy diagram of a Schottky contact in the scale of the Debye screening length.

Then, if the density of gap states /Yus "hanges only slightly near ¢n, the charge per unit area of
the gap states is

"us = _ "Nus (¢o _ ¢n ) · (3.6)

This exponentially decreasing gap charge [8] with decay length (2q)"i yield the contribution

eD = %s (3·7)
o,us 2q e(2q) eo

to Do. Here the dielectric constant for the wave number 2q has to be used [11]. The charged gap
states will be screened µartly by a charged layer in the metal with an extension of l3&' == ao giving

eDo,m = " An eo °m ' (3.8)

Further 'j'us and %71 are screened by a space-charge depletion layer having the total charge %

But since in as good as all cases o'd < 10"4As/m2 one has (see Section 4)

c'm + °US = _<1 m 0 · (3.9)

Then one can add De, Do, us) and Do, m giving

Do = D, — a'(¢o " ¢n ) (3.10)

with

" (2q ,1(2q) + 13:) ":"' ' (3.11)

This approximation was derived originally by Cowley & Sze [13] using additional artifical model
assumptions. It was often used and modified [10,11,21].

Inserting (3.10) into (3.4) one obtains for the barrier and for Do

¢1, = Eg_¢O = 1:a(F-D,)+1:a(Eg-On) (3.12a)



Do = 1:aDe_1:a(Eg-¢n-P) (3.12b)

with
P - D, = -µ$ + e! + Eg - D, , (3.13)

where j5 is determined only by the two bulk band structures. Eg. (3.12a) differs from those known

from the literature [4,9,10,11,13,21] just by the term jjs — D, (3.13). An expression as (3.12b)
.or the microscopic dipole contribution was not derived before. Of course, with (3.12a) also the
band bending is given as V) = ¢1, " C (3.2). If ionic relaxation at the interface will be important
the corresponding contribution to the dipole must be included in De. It should be noted that the
eqs. (3.12) (3.13) contain only three approximations: (i) The charge of the gap states is linearized
(3·6). (ii) In (3.10) a third term is omitted being proportional both to the total charg" _°d (3·9)

and the effective extension of the immediate interface region. (iii) There is a principal uncertainty
in splitting up the total interface dipole Po (2.13). This uncertainty is just the change of the band
bending over the extension of the microscopic dipole layer.

In the literature in the derivation of ¢1, just given eg. (2.16) was used instead of (2.12). Then

together with ¢s = C + Xs + 'Ys [22] and P, = V, + D, [18] one has

P — D, = ¢'m — X, - Dj ) Dj " Dm - D, + D, . (3.14)

Here Xs is the electron affinity, and J/s is the total band bending both at the free surface. Pm =
Dm and Ds are the atomic-scale surface dipole of the metal surface and the microscopic part
of the semiconductor surface dipole, respectively. Eg. (3..14) is correct. But here three interfaces
with correc,t surface orientations ha!e to be analysed precisely. Contrary, in (3.13) µ9, and li!
are determined by the bulk electronic structure as shown in Section 2. Although (3.14) can be
found in the work of Tejedor, Flores & Louis [10] it was first derived starting with bulk properties
(cf. (2.17)) by Duke & Mailhiot [14] but under some limiting assumptions. In both papers the
model of Smith [23] was used to calculate Dm and Ds and a similar one appropriate to bimetallic
interfaces to calculate De. Problably they got Dj to be negligible for this reason. Then with
Dj £± 0 (one "major result" in [17]) one obtains from (3.14) the result of Cowley & Sze [13],
(3.12a) with

j5 — De = ¢m " Xs ) (3.15)

originally derived using ujj- instead of Po (and V, = 0). In the following we demonstrate the
advantage of using (3.13) instead of (3.14) (3.15) [24].

.4. The influence of doping on the barrier height

Empirically it is well known that the barrier height ¢1, and hence the distance ¢'0 of the chemical

potential from the valence band edge (Fig. 2) is independent of the doping level. This means
especially ¢'0 = < and can be expressed with (3.2), (3.3) as the common relation

¢1, + < = Eg · (4.1)

If the barriers are measured in transport experiments the right hand side of (4.1) is Eg _ ('AJ':·m +

^KPn )· Previous derivations of (4.1) used special assumptions as the doping independence of the

electron affinity [4] or the pinning condition /Yus " (x) [9]. Other rather complicated model cal-
culations [17,25] led to a limiting doping density Na,d " 10"cm_' for the validity of (4.1).



Here a rather general derivation of (4.1) will be presented. Eg. (3.4) shows that ¢'1, can depend

on the doping level only via the microscopic dipole barrier Do. The dependence of Do on doping
is possible principally (i) by the relative position of the metal and the semiconductor band struc-
tures at the interface which is described by ¢0 and (ii) by the total charge —od at the interface

compensating the space-charge in the semiconductor (boundary conditions). The space-charge
is extended over the Debye-length 1d = (KT e eo /e2N )'/2 · · · · ·

, a,d
with the static dielectric function e

and is connected with the band bending V,). On the other hand the neutralizing interface charge
has an, effective extension of roughly 6,If = ( 2q E(2q) )"1. Hence the resulting potential drop due
to c'd is roughly

V, 6l":f Mo
(4.2)

giving rise to a shift of ¢0. It is negligible if Mo << 0.1V,. This leads to the limit Na,d <<
4 . 1018cm"3 (in accordance with [17,25]). Under this condition Do is independent of the total
space-charge od and can depend only on ¢0. The second equation (3.4) is then

D,(q5,) - ¢', = -l'j + '! (4.3)

where the function between Do and ¢0 is not affected by the doping. Here the right hand side
does not depend on doping. Since the left hand side depends only on ¢0, this quantity itself
and hence (with (3.2)) also the barrier ¢'1, is independent of doping. Having shown the validity

of (4.1), it is seen together with (3.2) that although the interface dipole Po (2.12) depends on C
(depending on doping) the band bending V) also depends on C in the same way, and V, + C = ¢'1,

is constant. This rather general result shows that indeed for a doping below the given limit the
contact properties can be calculated by considering the microscopic interface region only which is
done in supercell calculations [11].

5. The influence of the metal on the barrier height

One important parameter in the relation (3.12a) for the barrier height is at (3.11). To estimate cIt
we use the values for /Yus and (2q)"i from Tejedor, Flores & Louis [10] and from Louis, Yndurain
& F!ores [21], and 1(2q) n 2.5 [11]. In atdition for the metallic decay length roughly /!E = 0.5 A
[15] is used. R.esulting values for a are given in Tab. 1. It is seen that a increases with decreasing
gap width Eg.

For values a > 10 one could expect from (3.12a) that

¢1, " Eg - ¢n (5.1)

is already a good approximation. The barrier height ¢b is then determined by the neutrality level

Cn alone which itself depends on the matching of the gap states with the metal wa.ve functions.
According to its definition usually en is assumed to be a property of the bulk semiconductor band
structure alone. Then, (5.1) would be independent of the metal. Although (5.1) was often used in
this sense [12] the experimental values show a dependence on the metal. Even for the narrow-gap
semiconductors with a large a (i. e. q,"1 << 1)) ¢'1, differs by 0.1eV or more for junctions with

different metals. Hence, either (P — De )/at is not negligible in (3.12a) or ¢'n depends on the metal.

In the following the influence of the metal on ¢1, "la (P — De) will be discussed. Thereby the

advantage of using (3.13) instead of (3.14) (3.15) will be demonstrated.



Table 1 : Gap width, density of gap states, their extension, cv from (3.ii), <1'" and Eb

Eg N,,, (2q)"' cv <"" Eb

("V) (10"eV"'m"') (A) (eV) ("V)

ZnS 3.60 1.96 1.56 3.99 -5.34
GaP 2.27 3.12 2.94 9.45 -4.12 0.81

GaAs 1.43 3.72 4.81 16.32 -3.96 0.50

Contrary to (5.1) in the literature one can find various attempts [2,18] to systematize phenomeno-
logically the measured barrier heights in terms of metal properties alone [1,4,19]. One of the
frequently used expression is

'1j = S'¢',n + C' (5.2)

with the metal work function ¢'m. S' and C' are fit parameters which are independent of the
metal. Systematic applications of the assumed dependence (5.2) has shown mainly, that for ionic
semiconductors S' is large (order of magnitude is one) and hence the metal (or its work func-
tion) influences the barrier significantly whereas for covalent semiconductors An is less important
(S' << I). The transition between these two limits is described to be rather abrupt [26]. To

compare (5.2) with the theory we note that apparently from (3.12a) with (3.14) one can obtain a
similar dependence

b

¢j " 1 : a (¢m - Dm - D,) . (5.3)

Terms depending only on the semiconductor are not included in (5.3). Evidently (5.3) is identical
with (5.2) with

S' 1 : a if ±(Dm +D,) 0. (5.4)

That means if the microscopic dipoles Dm at the metal surface and De at the interface to the
semiconductor are such that Dm + De does not depend on the metal. This will be the case
e!pecially if Dj = Dm _ Ds + De (3.14) is zero: superposition of Dm and D,s to the interface
dlpole De . Indeed, in the literature [14,17] Dj was calculated to be negligible. But the numerical
values for S' calculated from the first equation (5.4) with (3.11) [10,21] are systematically smaller
than those fitting the experiment with (5.2). Even for the ionic ZnS eg. (5.4) gives with Tab. 1
S' = 0.2 whereas S:,rp > 0.6. The conclusion in [10,21] was that the calculated values of cv are

too large. To clarify this controverse situation we notice that instead of (5.3) from (3.12a) with
(3.13) one obtains alternatively

¢1, " 1 : a (_µ$ - D,) . (5.5)

Since De arises from the smooth matching of the valence densities whereas Dm , Ds occur at the
free surfaces one will have I De |<<| Dm I) I Ds I. Then, f~++~f&g one obtains &

d¢j,
~ 1 S,

d¢jj (5.6)

d(-µg,) " 1 + a ' d¢m

¥ from (S.S) (n"7/"">'27 D;j ) C'md (S2)



respectively. It is now important that the volume contributions µ5 for a large number of metals

are expected to vary by about 3 eV [27] whereas ¢m varies only by about 1 eV. The work function
is stabilized around 4 . 5 eV, though —µSl (due to the attractive ionic potential) varies much

stronger (Heine & Hodges [27]). This means

d(':t) " " " 2 ""
and hence with (5.6)

d¢j, = 1 , S, = d¢j, (5.8)

d(-µS,) 1 + a d¢m

as mentioned above.

Table 2 : For GaAs-metal contacts experimental values for the barrier, the metal volume con-
tribution —µS, determined from (3.12a) (3.13) with the experimental ¢'1,, and the experimental

metal work functions ¢m (all values in eV)

Au Pt Ag Cu Al

<"P [19] 0.95 0.94 0.93 0.87 0.80

-µg, (3.12a) (3.13) 3.80 3.63 3.46 2.42 1.21

¢m [29] 5.30 5.52 4.48 4.66 4.23

Now (3.12a), (3.13) will be applied explicitely, and thereby the validity of (5.7) and (5.8) will be
demonstrated numerically. To do this we use

'! = ':" = e" - Eg , 0n = Eb , D, = 0 , (5.9)

where Eb is the effective mid-gap level of Tersoff [12,28]. The approximation for De has been
discussed already. Only for some semiconductors (as GaAs and GaP) values for <K [16], Eb

[12,28], a [10,21] can be found together with measured barrier heights [19]. More important
is the lack of knowledge of the reliable values for —µ: Therefore we proceed as follows. At

first we consider GaAs-metal contacts for the respective metal using the experimental barrier
heights, work functions, eg. (5.9) and a = 16.32 from Tab. 1. One has a linear dependence of
the barrier on the resulting values —µf, (Tab. 2) with a slope d ¢b/d(—µZ ) = 0.06. Further,

using the experimental work functions one can determine a mean value for S', second equation
(5.6), giving S' = 0.11 in accordance with our theoretical inequality (5.7). Next, we use now
the values —µf, just determined (Tab. 2) to calculate with (3.12a), (3.13) the barrier height for

GaP-metal junctions (a = 9.45). For the five contacts considered in Tab. 3 the deviation from
experiment is 0.02 . .. 0.2 eV. Alternatively one can use (3.12a) with (3.15) with the experimental
values An _ Xs· The resulting barrier heights deviate from the experiment about 0.02 . . . 0.22 eV.
By linearly interpolating the dependence of the experimental barrier heights on —µ$ and on the

metal work function ¢m we obtain

d¢j, ,,= 0.09 1 = 0.10 ,

d(-µg,) ' 1 + a

S' ·Z :;:- = 0.'3 .
(5.10)



Again these values confirm the theoretical relations (5.7) and (5.8). This result and Tab. 3
demonstrate clearly the advantage of the description developed here. Nevertheless, it should be
emphasized that in general there is no linear dependence of the barrier on ¢'m 7 Dm: Xs, or Ds ap-
parently seen in (3.12a) with (3.14) since the dipoles De, Dm: Ds are non-linearly connected with
the other quantities. But strictly, there is no linear dependence between ¢'1, and —µ$ , lf¢, and Eg.

Table 3 : The barrier height ¢1, for GaP-metal contacts: experimental values and theoretical

ones from (3.12a) (3 13) with —µ5 from Tab. 2, and from (3.12a) (3.15) using experimental values

for ¢m " Xs, respectively. (all values in eV)

Au Pt Ag Cu Al

<"1' [19] 1.34 1.52 =1.26 1.34 1.14

¢1, (3.12a) (3.13) 1.51 1.49 1.47 1.37 1.26

¢1, (3.12a) (3.15) 1.47 1.49 1.39 1.40 1.36

¢m - X, [29,30] 1.52 1.74 0.70 0.88 0.45

At the end of this section the following peculiarity of (3.12a) will be discussed. Eg. (3.12a) yields
(5.1) exactly not only in the limit a"~ cx) but also for arbitrary a if

j5 — De = Eg _ ¢n ) or (5.11a)

¢1, = -ig, + e! + Eg - D, = Eg - ¢n (5.11b)

if (3.13) is used. The values —µ5 can be taken from Tab. 2 and the other values contained in

(5.11b) with (5.9) are compiled in Tab. 4. Indeed (5.11b) is valid in some cases as demontrated in
Tab. 5. At first it is seen from Tab. 5 that in these case' 0b = Eg _ ¢n is fulfilled with accuracy.

But the last column shows that indeed this quantity coincides well with E = —µg, + e! + Eg

showing that (5.11) is valid even with De = 0 except in the case of the Si-Cu junction. Another
point of view would be the following. The second equation (5.11b) is

-'! - ¢n + D, = -µf, · (5.11c)

Neglecting De one obtains for the left hand side for a large number of semiconductors 2.8 . . .4.1 eV.
But for most of the semiconductors this value equals 3.5 eV or more. Such large values for the
right hand side —µ$ can occur mainly for noble metals. Therefore, mainly for noble metals (5.11)

can be fulfilled and one has indeed (5.1). But this does not signify pinning due to an "infinite"

density of states.



Table 4 : Valence band energies of Frensley & KrOmer [16], effective midgap energies of Tersoff
[12,28] and gap energies for some semiconductors

<" [16] (in eV) Eb [12,28] (in eV) Eg (in eV)

Si -3.16 0.36 1.11
GaAs -3.96 0.50 1.43
InP -4.58 0.76 1.26

GaSb -3.89 0.07 0.72

Table 5 : Independently determined values for eg. (5.1lb)

<"P [19] (in eV) Eg - ¢n (in eV) -µ$, + 't + Eg (in eV)

Si-Cu 0.75 0.75 0.37
GaAs-Ag 0.93 0.93 0.93
InP-Au 0.49 0.50 0.48

GaSb-Au 0.61 0.65 0.63

6. Ohmic contacts

Often no rectifying behaviour is desired equivalent'gegative barriers ¢11 °' <, respectively. From

(3.4) it is seen that for n-type semiconductor' ¢b is negative if (with e! == <k )

Do > -/'t - ( -e" ) (6.1)

is valid. Since in this case the chemical potential at the interface lies above ¢n and even in the
conduction band the microscopic interface dipole Do is negative. Therefore, according to (6.1)

" ' _ b ' _ fk is large. Indeed, for semiconductorsOhmic contacts are expected only if µm is small and (fC
with —<k < 2.8 eV no Ohmic contact was observed [19]. In the left part of Tab. 6 the values
<k for three typical semiconductors having —<k > 2.8 eV are sh:wn. But ai;o for CdS (Tab. 6)

no Ohmic contact was observed, although CdS-Al-contacts (_µm small) yield already a very

' _ fk is larger. Accordingly, the contact with Al is Ohmic whereas thosesmall barrier. For InP Ecj

, . , . .with the noble metals (_µm large) are rectifying [19]. For InAs —<k is largest. But in this case
¢n = Eb is situated within the conduction band (Tab. 6). Therefore, if ¢1, < 0 the dipole Dq

can be positive and according to (6.1) Ohmic contacts are formed also for the noble metals (—µ5

large) what is verified by experimental investigations [19].

For p-type semiconductors the barrier < is negative if

D, " -l'j - (':"") (6.2)

what is obtained using (3-4) (3.3) with Ej = E:K. Here the chemical potential at the interface is

situated within the valence band (below ¢n) and Db) is therefore positive. Then, from (6.2) it is

seen that Ohmic contacts can only be formed if —µm is large and —<K is small. Note, that the
situation is contrary to n-type semicondutors (6.1) and that —<K > —<k. At the right hand



side of Tab. 6 three semiconductors having smallest values —<K are listed. But also for Si (as

' _ fk no Ohmic contact is formed [19] since the right handwell as for Ge) having smallest values %
side of (6.2) can not exceed about 0.8 eV. For GaAs and other semiconductors —<K is larger and
also no Ohmic contact is observed [19]. But for GaSb the neutrality level ¢'n = Eb is situated
near the valence band edge (Tab. 6) and even if the barrier is negative, Do is positive but small.
Therefore, the condition (6.2) can be fulfilled for noble metals. Actually, GaSb-Au contacts are
Ohmic [19]. Since the values for —µf, and —<K in (6.2) for most semiconductor-metal junc-

tions in connection with the positive Do prevent Ohmic contacts, one can propose the following
procedure nevertheless to obtain them: One has to decrease Do by a suitable technology. Such a .
required negative contribution to Do is possible if directly at the interface on the semiconductor
side acceptors a introduced. This corresponds to the empirical methods to produce Ohmic con-
tacts [4]·

Table 6 : Eg, Eb, and —<K or —<K (in eV)

Eg Eb -<" Eg Eb -<"

InAs 0.36 0.50 4.02 Si 1.11 0.36 3.16

InP 1.26 0.76 3.32 GaSb 0.72 0.07 3.89

CdS 2.42 - 3.00 GaAs 1.43 0.50 3.96

7. Summary

The charge transfer, which determines the properties characteristic to the contact and establishes
the thermodynamic equilibrium, equals the change of the total charge density in comparison to the
cut off densities and gives rise to an interface dipole uniquely determined by bulk properties only.
To this end both the cut-off plane and the reference level for the chemical potential are shown
to be uniquely defined. The interface dipole depends on the surface orientations and strongly on
doping. We emphasize that our description opens up the of way of calculating it without the
need of using the jellium model. The interface dipole consists of the total band bending and an
atomic-scale contribution. Both portions are coupled what is clearly seen considering charging
gap states. But only the band bending enters the barrier.

The position of the chemical potential within the gap is shown to be independent of doping pro-
vided that the dopant density is not too high. Then the barrier height can be calculated by
considering the microscopic interface region only notwithstanding the value of the density of gap
states. The barrier height does not depend linearly on surface properties (as e. g. the metal work
function). Previous theories failed to explain the dependence of the barrier height on the metal
even for the more ionic semiconductors. The reasons for that originating in the use of surface
properties are discussed in detail and illustrated numerically. In addition, it is explained why
approaches relating the barrier height only to the semiconductor band structure are sucessful only
for the rather noble metals. The formation of Ohmic contacts is considered at the end.
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