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Abstract

A rather general theory of heterojunction band offsets published recently by
us is summarized and improved in some details. It is applied to 55 heterojunc-
tions as possible combinations of 11 semiconductors. For 19 of them there exist
reliable experjrnental values. Comparison with the experiment shows that the
present theory yields a significantly better agreement with experiment than
those of Tersoff and others. The present theory gives non-transitive band
offsets in accordance with experimental observations. Thus for the 36 hetero-
junctions for which no experimental band offsets are available our predicted
values can serve as a reasonable estimate. In addition also the completely
independent values following from the electron affinity rule are given.

1. Introduction

- The theory of heterojunction band offsets is the subject of numerous publications (for reviews see
[1,2,3]). In these papers very different properties of the semiconductor, its surface or of the inter-
face are assumed to be the dominating quantity determining the band offset. Probably the most
frequently used expression for predicting band oifsets was established by Anderson [4]. Although
the accuracy of his electron affinity rule is only moderate it is wide-spread due to the availability
of the data needed. A further development of the electron affinity rule is given in [5,6]. Other
often cited theories [7,8,9,10] are based on the assumption of equalizing reference levels for the
band edges of both semiconductors. These theories and the electron affinity rule yield' a linear
dependence of the band offset on bulk or surface properties. But linearity imposes a principal
accuracy limit on the predictions. Other theories [5,11] are better justified from a theoretical point
of view. Connections between these partly controverse descriptions were shown in detail recently
[12].

In a previous paper [12] we presented a rather general theory on heterojunction band offsets.
It is based on (i) using an exactly defined equilibrium condition, (ii) considering both the band
bending and the microscopic charge redistribution at the interface which are both needed to reach
equilibrium and (iii) taking into account the dependence of the charging of the gap states on the
band bending. Already a first simplified estimate [12] led to an important improvement of the
accuracy of the calculated band offsets compared to the predictions of Tersoff's theory [7] giving
most accurate band offsets before.

The aim of this paper, besides improving the theory in some details, is mainly to predict band
offsets for such cases where experimental results are not available. For the 55 heterojunctions
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considered surprisingly indeed only for 19 reliable measured values were published [I]. Compar-
ison for these cases show the improvement reached with our description: the mean square and
the maximum deviations from the experiment are 0.15 eV and 0.27 eV, respectively, whereas the
corresponding values for Tersoff's theory are 0.21 eV and -0.37 eV and for the electron affinity
rule 0.56 eV and 0.99 eV. These numbers have to be compared to the accuracy of the experimental
values which was estimated to be ±0.1 eV [I] (but this might be too optimistic, e. g. for Ge-GaAs
photoemission measurements gave values for the valence band offset between 0.24 eV and 0.7 eV).
Thus for these 36 heterojunctions where no experimental offsets are available our predicted values
can serve as a quite reasonable estimate. Additionally we gave also the completely independent
values following from the electron affinity rule since, of course, only the mean and maximum de-
viations are expected to be smallest for our values.

2. Theory

The valence band offset is by definition the difference of the valence band edges E . measured

near the interface on the same (arbitrary) energy scale u?

^Eu = Eu, _ Eu1 · (I)

Lower indices i = 1, 2 are used for the semiconductor on the left and right half spaces, respectively.
With the notation AE z E, — E, the conduction band offset is AE, = ^Eu + AEg where Eg
is the gap energy. Fig. 1 shows the schematic band diagram of the junction with the macroscopic
band bendings J/oi (Debye-length scale) on both sides of the mathematical interface. The (electro-)

chemical potential µ is constant throughout the contact and can be used as the common energy zero
Lor determining the band offset. Then the valence band edges depend as E . = C. — E . + V .

m i gi ozon the band bending Voi and the energetic distance Cj of the bulk conduction band edge Eci from

the chemical potential

C zz ec — µ = eu + Eg — µ · (2)

Then the valence band offset is simply

^Eu = ^C - AEg + AV, . (3)

In (3) the band bending J/oi is positive always if the bands are bent upwards in direction to the

mathematical interface. According to (3) the so called "built-in potential" AV, determines the
band offset. But AV;, itself depends on the electronic structure of the immediate interface region
which has therefore to be considered in detail.

Contacting two half-infinite solids results in a charge transfer in order to equalize the chemical
potentials. The total interface dipole barrier Po which is built up by this charge transfer is equal
to the difference in the che:ical p¶entials. But the (electro-) chemical potentials µi depend on

the energy zero. If the required unique reference levels are denoted by Pco, i' the interface dipole

is given by
Po = _ (µ$ — µf) with µ: = µi " 'Pco,i ' (4)

It has been shown in [12] that the reference levels 'Pco, i are uniquely determined by the corre-

sponding bulk charge density alone for a given surface orientation (and a given top atomic layer
for a more complicated crystal structure). In semiconductors the chemical potential depends on
doping and temperature. Therefore, the valence bulk band edge relative to the reference level

':i = 'ui 'P,,,i (5)



is introduced. With (2) and (5) one can rewrite (4) as

P, = -Lj£! - AEg + ^C . (6)

Here doping and temperature influence mainly ^¢ alone. It should be emphasized that the value
of the interface dipole barrier Po (6) which has to be built up in order to achieve equilibrium
is uniquely determined by the total bulk charge densities for a given interface orientation [12].
To evaluate Po (6) one has to consider (2), (5), and the equations determining the reference
levels Pco, i given elsewhere [12]. The charge transfer needed to obtain the dipole barrier Po of

the magnitude (6) consists of two contributions. At first one has a charge redistribution at the
interface on an atomic length scale resulting in a contribution Do. Secondly, there occur two space-
charge layers and a net interface charge. The resulting band bending difference J/o1 " J/o2 = _^Vo
also contributes to Po. Therefore one has

Po = Do — AV, . (7)

Evidently, only the part ^Vo of (7) contributes to the band offset (3). On the other hand one can
eliininate AV, from (3) by using (7) and obtains for the band offset with (6)

AE, = Lj£! + D, . (8)

Apparently, from (8) one could conclude that the only (self-consistent) interface property deter-
mining the band offset is the microscopic dipole barrier Do at the interface. Indeed, this is the
assumption underlying a large group of theories on heterojunction band offsets (see [6,12]). Ac-
tually, the macroscopic contribution (—AVJ and the microscopic one (Do) to the dipole barrier
Po (7) are coupled with one another as will be explained in the following.
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Fig. I: Energy diagram of a heterojunction in the scale of the Debye screening length.

The microscopic interface contribution Do to the interface dipole barrier can be regarded as
consisting of two parts [13]:

Do = De + Dus · (9)

De arises from the smooth matching of the valence bulk charge densities and Dus is created by
charged gap states at the interface. In order to evaluate the latter the concept of the neutrality
level is used. The interface neutrality levels ¢ni (relative to the valence band edge a! the inte!faSe)

in the semiconductor i is defined such that the number of valence band states per unit area missing
due to the boundary condition (compared to periodic boundary conditions) is compensated by



t!e decaying gap states in the gap below ¢'ni· If the chemical potential coincides with ¢ni

( 1· e· ¢ni = % " Cj " J/oi ) one has local neutrality. All the corresponding states contribute

to De. But usual!y the chemical potential deviates from ¢'ni and one has a net charge per unit

area [14] of decaying gap states

%si = " e /Yusi (Egi " Cj " VQj " ¢ni) (10)

where N,,,i is the density of gap states nea' ¢'ni [15]. The total charge

'JUS = %s1 + %s2 (11)
,gives rise to the two space-charge layers connected with the band bendings. But there remains

a microscopic dipole layer due to the charged gap states having the effective extensions 6.. As

shown in the appendix the latter produces a dipole barrier (eqs. (A5) with (A7)) '

Dus = _ t i 62 'jus2 " 'Sj 'j'us1 I ' (12)

Via %si (10) Dus depends on the band bendings J/oi and hence on the band offset itself (see

(3)). This dependence becomes more clear by combining (12) with (11) and considering (10) and
(3). Then one obtains for (9)

D,, = D, — a ( AEu + Mn ) + Du, (13)

e'(6,-F'5,) " 1 1 "

" " (14)
eo

/ ~ /Yusi + Nus2 -

" = _ g "62Nus2 " 61 /Yusi (jus · (15)Dus (jo _ Nus2 + /Yusi

~
An expression similar to (13) was published ealier [5] but without Dus (15) and without an explicit
expression for a (14). Both were derived first by us.

Equations (13) and (8) show the coupling of the microscopic dipole barrier with the band ofEset
(and due to (3) also with the band bendings). Both equations represent a negative feedback
mechanism stabilizing the band offset. Solving the two equations for the band offset yields

^Eu = 1 : a i Lk! + D, + Du, j - 1 : a A¢'n (16)

together with the explicit expressions (14) and (15). It should be mentioned that apart from
the small 0.01 eV unce"tainty explained in the appendix the only approximation in (16) is the
iineari;ation used in (1U). It is justified if each deviation Egi " Cj " J/oi " ¢ni of the chemical

potential from the neutrality level is small compared to the gap width. Our estimates showed that
indeed usually this quantity is less than Eg /10.

For using (16) to evaluate the band offset further approximations are needed. At first in most
cases ,Dus. represents a negligible contribution to Dus: Usually the quantities %si (10) have

opposite signs and are comparable in magnitude I %s |<<| %s1 I: 1 %51 1· In (15) the total
charge %5 is multiplied by the term in brackets being comparable with 6. if the gaps are not too

2
much different. Then it is seen from (12) and (16) that usually Dus ± 0 is a good approximation.
Indeed, estimates have shown that Dus is of negligible influence on the band offset. A little more

serious is the lack of knowledge on the dipole barrier De due to the smooth matching of the
valence band states (up to the lower neutrality level) . But at the free surfaces where the density
decreases to zero the corresponding barrier has a value of one or a few eV. Therefore De should



be much smaller and considering the factor (I + Cy)"1 in (16) it will be neglected here as a rough
estimate. For the neutrality levels ¢ni in (16) we use the effective mid-gap levels Eb of Tersoff

[7]. For the,valence band energies E:i the values <1'" of Frensley & KrOmer [8] can be used [12] as

a rough estimate although they were obtained within another context. Thus, the approximations
we use to evaluate (16) are

D, + D,, ==^ 0 , '! _ ':"" [8] , ¢n - Eb [I] . (17)

Finally one needs the value of a (14). A systematic two-band model for the imaginary band
structure yields for the decay length (A7) in (14)

,5 _ 1 2t h' 9 57 eV A'" = (18)2q %st· mo Eg a Eg a

where %sr == 2.5 is chosen. mo is the electron mass and a is the perpenticular lattice constant.
The density of states in (14) is given by

2
/Yus = T a2 Eg " (19)

All data needed are summarized in Tab. 1. For these 11 semiconductors boih the values efi'" and
Eb are available. InAs is not included since the efkctive mid-gap level Eb lies alwaysuin the

conduction band (Eb > Eg)·

Table I: Values for calculating the band offsets (/Yus in 1018 m-2eV"1)

sem. Eg ("V)

0.67
0.72
1.11
1.26
1.43
1.44
1.60
2.15
2.26
2.27
2.67

a (A) 6 (A) N,,, <7' (eV) Eb (eV)

Ge
GaSb
Si
InP
GaAs
CdTe
AlSb
ALAs
ZnTe
GaP
ZnSe

5.658 2.524 2.968 -3.25 0.18
6.094 2.181 2.381 -3.89 0.07
5.431 1.587 1.944 -3.16 0.36
5.869 1.294 1.467 -4.58 0.76
5.642 1.186 1.399 -3.96 0.50
6.477 1.026 1.054 -4.90 0.85
6.136 0.975 1.057 -3.94 0.45
5.661 0.786 0.924 -3.96 1.05
6.101 0.694 0.757 -4.74 0.84
5.450 0.773 0.944 -4.12 0.81
5.667 0.632 0.742 -5.07 1.70

¢PE (eV)

4.80
4.85
5.12
5.70
5.50
5.78
5.27
6.00
5.78
6.05
6.80

3. Band offsets and electron affinity

The electron affinity Xs is a property of the free semiconductor surface. It is measured via the
photoemission threshold ¢'PE = Xs + Eg [16]. For energetically characterizing the free surface
in addition the work function Os is needed. Both are connected with one another and with the
band bending V, by

Cs = X, + V, + C · (20)



On the other hand the work function consists of [17] a dipole barrier (Y's + Ds ) (similar to (7) Ds
is caused by a charge redistribution on an atomic length scale), and the bulk chemical potential
(4) according to

¢, = (V, + D,) - µb = (V, + D,) - (G - '! - Eg) (21)

where in the second equation (2) and (5) are used. From (20) and (21) we obtain for the affinity
X, = D, - e! - Eg . (22)

Finally, inserting (22) into (8) one obtains as an exact expression for the band offset

^Eu = — ^X, — AEg + ( Do + D,, _ Ds, ) (23)

containing the electron affinity rule. The microscopic interface and surface dipole barriers Do and
Dsi } respectively, are not available from experiment. To obtain Anderson's affinity rule [4]

Aeu = — ^X, - AEg = - Mpe · (24)

one has to assume Do = Ds1 " 42 = _LLDs. This means just superposition of the two surface
barriers D . to built up the interface barrier. Deviations from this simple superposition are the

S2
reason for the only moderate agreement of (24) with the experimental values (see Tab. 2). The
derivation given here shows the actual approximation needed to obtain Anderson's rule (24). His
original arguments can be discussed better combining (20) with (3) giving

AEu = - ^X, - AEg + (M, + AV, - AV,) . (25)

Eg. (24) is valid if only a change of the band bendings occurs when the two semiconductors with
free surfaces are brought together. Then, of course, one has also the superposition of the micro-
scopic dipole barriers. (Comparison of (25) with (23) shows that the last term in both equations
must be the same.) So the flat band case (V,j = 0) is not required for the validity of (24) as

stated earlier [12].

4. Numerical results

As already mentioned reliable values for <k and Eb needed to evaluate the band offset with

the theory outlined in Section 2 using (16) with (17) - (19) are available for 11 semiconductors
(Tab. I). Consequently the band offsets were calculated for 55 heterojunctions corresponding to
the possible combinations of these 11 semiconductors. But in addition the electron affinity rule
(24) gives the possibility for a further independent estimate. According to the compilition [I]
reliable experimental values are available for 19 of these 55 heterojunctions. In Tab. 2 for each
pair of semiconductors 2-1 the valence band offsets AEu = Eu2 _ Eui are given. The first row
contains the available e"cperimenta1 values, in 6 cases the smallest and the largest are given, since
different values are published. In the second row our values according to (16) and in the third row
those following from the electron affinity rule (24) are given.

Already a first simplified evaluation [12] of (16) yielded the best agreement with the experimental
values, also better than the Tersoff [7] theory. Here we improve our predictions furthermore. The
mean square and maximum deviations from the 19 experimental values (mean values if different
values are published) are only 0.15 eV and 0.27 eV, in the case of the electron affinity rule 0.56 eV
and 0.99 eV, respectively (Tersoff [I]: 0.21 eV and -0.37 eV). The accuracy of the experimental
values itself is not better than 0.1 eV. Therefore in the larger number of cases where no experi-
mental values are known our results can be regarded as reasonable predictions for the band offsets.
In addition one can consider the values of the electron affinity rule (the mean and maximum de-
viations from experiment are larger, nevertheless in special cases this estimate can be better).



Table 2: Band offsets ^Eu = Eu2 " Eu1 for 55 heterojunctions: upper value: experiment [I],
middle value: this theory, lower value: electron affinity rule [4,6] (all values in eV)

ZnSe GaP ZnTe AIAs AlSb CdTe
(') (') (') (') (') (')

1.29-1.52 0.80 0.95 0.78-0.95 - 0.85 exp
Ge (2) 1.59 0.68 0.84 0.84 0.34 0.83 this

2.00 1.25 0.98 1.20 0.47 0.98 EA

0.4
GaSb (2) 1.51 0.63 0.79 0.78 0.32 0.82

1.95 1.20 0.93 1.15 0.42 0.93
1.25 0.80 0.85 - - 0.75

Si (2) 1.52 0.59 0.82 0.72 0.26 0.79
1.68 0.93 0.66 0.88 0.15 0.66

InP (2) 0.77 -0.11 0.11 0.00 -0.40 0.15
1.10 0.35 0.08 0.30 -0.43 0.08

0.96-1.1 - - 0.15-0.45 -
GaAs (2) 1.17 0.26 0.50 0.37 -0.04 0.52

1.30 0.55 0.28 0.50 -0.23 0.28

CdTe (2) 0.56 -0.32 -0.07 -0.24 -0.59 /
1.02 0.27 0.00 0.22 -0.51

0.20
AlSb (2) 1.20 0.29 0.57 0.37 / -0.05 (I) GaSb

1.53 0.78 0.51 0.73 0.05
-0.05 0.17-0.4

AIAs (2) 0.87 -0.07 0.26 / 0.17 0.15 (I) Si
0.80 0.05 -0.22 0.27 0.32

0.57 - 0.64
ZnTe (2) 0.58 -0.31 / 0.59 0.69 0.68 (I) InP

1.02 0.27 0.58 0.85 0.90
0.05 - 0.23-0.7

GaP (2) 0.92 / -0.35 0.27 0.37 0.37 (I) GaAs
0.75 -0.20 0.38 0.65 0.70

GaAs InP Si GaSb Ge '
(2) (2) (2) (2) (2)

Finally some remarks on different influences on the band offset will be made. (i) It is very impor-
tant that contrary to previous theories but in agreement with the experiment [2] our values for

1 E3?1 74 AE3?2 _ AE1?2). In our theory the non-transitivity isthe band offset are not transit've (A u u u
a result of the non-transitivity of cv (14). (ii) In agreement with the experiment the band offset is
independent of the doping levels, or the values of C: A change of AC is compensated by an opposite
change of the band bendings AV;, (see also the remark in the appendix on the boundary condition
for solving Poisson's equation in the space-charge layers). Deviations are possible only if dopants
segregate at the interface. (iii) Experimentally there is no definite information on the orientation



dependence of the band offset. Principally via Lj£! in (16) our theory contains such a dependence

since the reference level in (5) depends so. For the band offset this dependence is reduced by the
factor (I + a)"1. A quantitative estimate would require to determine the orientation dependence
of the reference level with the method described by us [12]. (iv) Improvements concern mainly
better estimates for De and possibly for ef in (16). -

Appendix: Dipole barrier due to charged gap states

In both semiconductors i one has charged gap states with a net charge per unit area (10) contribut-
ing to the total charge (11). In fact the charged gap states have a spatial extension perpenticular
to the interface being described by a charge density eus, j(Z). So one has

%s, i = / dz CUsi(z) · (Al)

Qu81 (Z) is zero in the semiconductor 2 and vice versa. The total charge is simply

%, = / dz t?,, with (A2)

Qus(z) = Qus1(z) + Qus2(z) · (A3)

Now it is convenient to rewrite (A3) as
Qus (Z) = [ Qus(z) _ 'jus 6(z)! + (j'us 6(z) · (A4)

(6(z) is the Delta-function.) Here the first term in brackets is a neutral dipole layer due to
(A2) whereas the second term is an interface charge per unit area being equal to the net charge
(11). This second term will be screened by space-charge layers on both sides of the interface.
The resulting band bendings Vo1) J/o2 follow from solving Poisson's equation. As usual the first
boundary condition is that (j'us determines the discontinuity of the electric field across the junction.
But a peculiarity is the second boundary condition: instead of continuity of the potential one has
to consider the discontinuity of the band edges, that means the band offset. The first term on the
right hand side of (A4) gives rise to a dipole barrier which is clearly found to be

Dus = _ t ( S2%s2 _ S, %s1 ) (A5)

with the decay lengths
(Si = ' / dz z Qus, j(Z) j/ / dz Qus, j(Z) (A6)

of the charged gap states. It can be approximated by the exponential decay length (2q)"' of the
gap states near the neutrality level. But in addition a screening of these states should be taken

into account [18]. Then one has

i ~ 6 = 1 (A7)
2q ej2q)

where E(2q) is the dielectric function appropriate to this decay length. A reasonable estimate
seems to be E(2q) 2± 2.5 for most semiconductors (see [18])·

The procedure presented here shows clearly a principal uncertainty in splitting up the dipole bar-
rier (7) into band bending difference and a microscopic contribution. The band bendings result
from the last term of (A4). But in (A4) the plane z = 0 for the net interface charge is to some
extent arbitrary. It could be shifted within the two decay lengths. This would result in a change
of (A5) and an opposite one in the difference of the band bendings. This uncertainty is therefore
just the change of the band bending over the decay length of the gap states. It can be estimated



to be smaller than 10 meV.
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