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Abstract

Work functions, Schottky barriers, and heterojunction band offsets are the subject of numerous
publications. Nevertheless their theoretical description is still strongly dominated by several
empirical rules and model assumptions. Thus the connection between different and sometimes
controverse approximations and the relations between the three quantities are indeed not well
established. Therefore here several exact relations will be formulated and discussed. For the
work function it is shown that there exists a unique splitting into a surface dipole and a volume
contribution including the definition of the reference energy level. The latter is most important
for interfaces. For Schottky barriers exact relations are given containing the contact dipole
and its splitting into interface and space charge contributions. It is emphasized that their
determination cannot be decoupled in general. Finally, the corresponding exact relations for
heterojunctions are used for the approximate calculation of band offsets. For 19 heterojunctions
the mean deviation from the experimental values is significantly smaller than for the values of
the Tersoff theory.
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I. Introduction

Work functions, Schottky barrier heights, and semiconductor heterojunction band offsets are the
subject of several reviews [1-6] being concentrated on different aspects but there still dominate
empirical rules and simplifying model assumptions rather than a unique theoretical concept. It is
just the aim of our paper to review the general theoretical description and thereby to improve it
by establishing the relation between the three quantities exactly and to demonstrate what really
the approximations are underlying well known models. Basic concepts used are (i) the uniqueness
of splitting the density at interfaces into volume and surface dipole contributions, (ii) a unique
definition of the reference level for the chemical potential for all three quantities, (iii) the splitting
of the semiconductor surface dipole into an atomic scale dipole and the band bending, (iv) the
consequent use of the exactly formulated equilibrium condition, and (v) the local neutrality level
of semiconductor gap states formulated with less artifical assumptions than before. For Schottky
barriers a number of exact relations, some of them new, enable us to analyse the connections be-
tween different models and empirical rules. For semiconductor heterojunctions the same achieved
and in addition, a new formula is derived, containing as limiting cases both TersoflS [7] and Frens-
ley & KrOmer's [8] results. For nineteen heterojunctions the mean and maximum deviation from
experiment is significantly smaller than in Tersoffi theory.

2. Work function

A. Basic equations

The work function ¢' [1,9] is the minimum energy required to bring an electron from the volume
of the solid into the vacuum at a large distance. From this definition in a one-electron picture one

obtains
D = u — µ (2.1)

where u is the potential energy of the electron outside and µ is the (electro)chemica1 potential both
relative to the same energy zero. (For semiconductors states at µ are not occupied and (2.1) has
to be interpreted statistically.) Actually, this definition includes many body effects, especially the
image force arising from the attraction between the negatively charged electron and the remaining
solid having a positive charge. Indeed, far from the surface one has [9]

u = 'p(") (2.2)
where p(cjo) is the potential energy due to the electrostatic potential of the solid. The density
functional theory [1,9,10] yields

µ = p(i') + 6G[n]/6n(i') (2.3)
where G[n] is the functional of kinetic, exchange and correlation energy of the inhomogeneous
electron gas. Averaging (2.3) over the volume of the solid (notation < . . . >) yields

µ- < 'p >=< 6G[n]/6n(f) > " F . (2.4)

Then the work function (2.1) can be expressed as
'S = [ 'p(oo)- < 'p > ]- µ . (2.5)

Many body effects are contained in (2.5) only via G[n] so that because of the universality of this
functional they are regarded exactly. With (2.5) one obtains a separation into surface dipole and
volume contributions in the ca.se of the jellium model [11] only as shown already in [I]. Therefore,

inclusion of the ionic potentials requires a more detailed description.
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B. Surface and volume contributions

Principally by choosing the energy zero one can split (2.1) arbitrarily into two contributions. But

a unique separation into surface and volume contribution is required. Let e'(f) = e(f+ R) be the
translational invariant total charge density of the bulk. Then the charge density of the solid with
surface (mathematical the :t — y—plane) can be written as

1s(t) = e,(f) + ®,(f) , e,(f) = q('F) 0(", - ") · (2.6)
6es (r) contains all deviations from the cut-off density Qc(U For the determination of the cut-off
plane z = z, the neutrality of 6qs is not sufficient as shown below. Fig. 1 shows schematically the
potentials Pc and '5'ps arising from (2.6) after parallel averaging. Whereas 6es gives rise to the
surface dipole

P = 6'p,(oo) - 6p,(_'x') (2.7)
the potential of the cut-off density has for z > z, the value Pco· Therefore one has for (2.2)

'p(oq) = P + 'Pco (2.8)
and from (2.1) and (2.2) one gets a separation into surface dipole contribution P and a "bulk"
contribution — µb

¢ = p - µb , µb fz µ - p,, . (2.9)

Introducing
Mco, m zz 'Pco_ < 'P > (2.10)

and using (2.4) one can rewrite (2.9) as
q6 = P + ^Pco, m " µ (2.11)

where —µ according to (2.4) is a pure bulk contribution and =co, m is the difference between
the potential of the cut-off density just outside and the mean value of the potential inside (Fig. I).
Although one can often find the first equation (2.9) (also for contacts) actually the second equa-
tion (2.9) defining µb exactly is missing. In addition the cut-of plane z, is not yet determined. It

should be mentioned that ^'Pco, m depends on the orientation of the cut-off plane.

- Ojf',

/__!__

I ,

Zj Z
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'iP' -- -- -- __L$::,m

1 ,
Zj 2

Fig. 1. Parallel averaged surface dipole potential 6'ps and"bulk cut-off potential Pc·
Other symbols explained in the text.

C. Uniqueness of the cut-off plane

The definition of the bulk chemical potential µb (being most important for contacts) and the

expressions (2.9) and (2.11) are unique only if the definition of the cut-off plane z, is. The
neutrality of the surface dipole (after parallel averaging f dz 6qs = 0 ) is not sufficient to determine
z,. But z, is determined by the bulk charge density e(f) alone. Let a be the periodicity length
in z-direction. Then, after parallel averaging the cut-off plane is determined by the following
conditions:
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Zj

dp = 0 . (2.12)z, / a d" e(") = 0 , 'p(", — a) = P(',) = Pco ' d: ,,

Using (2.12) as boundary conditions in the Poisson equation one obtains
Zj

/ d" " Q(') = 0 (2.13)

Zj _ a

that means vanishing of the first moment of the density in the top layer. The cut-off plane z, is
uniquely determined by (2.13) for a given surface orientation and eventually a given top atomic
layer for a more complicate crystal structure. In addition one obtains

Zj

A"Pco,m " "2 :oa Zj / a dz Z2 Q(Z) > 0 . (2.14)

The sign arises from the fact that the ionic positiv charge is more localized than the electron

density.

Usually (2.13) and (2.14) have been overlooked in the literature. But only with these equations

the expressions (2.9) (2.11) for the work function are well defined. Accordingly there is a surface

dipole contribution P (2.7), the contribution A'pco, m (2.10) and (2.14) arising from the cut-off

bulk density determined by (2.13) and the pure bulk contribution —µ (2.4).

D. Metals

In this case the extension of the surface dipole layer is determined by the Thomas-Fermi screening

length, roughly the Bohr radius ao. The corresponding dipole will be denoted by Pm = Dm and

the work function is

¢m - Dm - µ!, . '
Fig. 2 shows schematically the quantities
change and correlation potential ufc does
electrostatics) due to the fact that (i) U:tc
(2.4) is just the averaged bulk kinetic and

(2.15)
defined in the preceeding sections. Apparently the ex-
not occur in the representation ('p arises only from the
vanishes outside. U:tc(OO) = 0 and (ii) —µ according to
exchange and correlation energy.

Clo

- D · ,t, 'p('o)
<'P:j Fu"""" "- " """-h iP,,,m "-Ajb 4)'0

Fig. 2. Energy diagram at a metal surface. Symbols defined in the text.

E. Semiconductors

Again there occurs a decrease of the electron density from the bulk into the vacuum over roughly
the length ao (and surface reconstruction) giving a dipole Ds. But due to the possibility of
charged surface states one has in addition a space charge layer with an extension of the Debye
screening length 1d >> ao. The resulting band bending J/s is a part of the total surface dipole
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sb, = P, - µ! , P, = D, + V,. (2.16)

Fig. 3 shows the energy diagramm in the 1D-scale. In this scale neither Ps nor Ds occur. Fig. 3
shows also the electron affinity Xs and the photoemission threshold ¢'PE = Xs + Eg. Due to the

Fig. 3. Energy diagram for a semicon-
ductor surface with conduction and va-

" " " lence band edge ec, eu, respectively.
X' ¢'PE 'i',

E, : t _ N
Ij

Ev "'
_ _ _ _ _

1d

possibility to measure ¢'PE [12] (electron escape depth small) they should be defined relative to

the band edges at the surface as shown here. Sometimes there was confusion on this question [13].
Now the work function can be written also as

0s=C+Vs+Xs : C z ec _ µ (2.17)

which can be useful for phenomenological considerations and for obtaining Vs by measuring ¢'s
and ¢'PE· But 'Ys cannot be calculated without the knowledge of the surface states. Further, from
(2.17) a comparison with (2.16) using (2.9) yields that

Xs = Ds _ (ec _ 'Pco) (2.18)

is determined by the atomic scale dipole Ds and the position of the band edge % relative to the
cut-off potential outside. On an ao-scale the band edges near the surface are practically constant
(Fig. 4). All energies except the chemical potential and 'p(oo) are shifted at the surface by J/5·

" "Ds jD(")

+ " "\: "¢)" r 'Pc ,"\JsE, :V'/, t E," , ' -jjb "Vjj

E, +\JsE V

\~/>~/

P

Id Qo

Fig. 4. Energy diagram at a semiconductor surface on an atomic scale.

Note that one has ('Pco + Vs )_µ = —/Lj + 'Ys in accordance with (2.16). Thus on this scale contrary

to Fig. 3 the band bending does not occur explicitely but only through the already mentioned
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shift. This makes clear that it is not possible adequately to represent all quantities relevant for

the work'function in a diagram in only one of the two scales. This is the reason for a large number

of misunderstandable representations in the literature especially for the more complex contact

problems when semiconductors are involved [2,14,20].
In (2.16) besides the dipole P, one needs —µZ (2.9). Together with the second equation (2.17)

the latter is

µ! = e! + Eg - C , '! " 'U - 'P,, · (2.19)

In (2.19) doping and temperatur influence mainly C alone. Here e! is the valence band edge

relative to the cut off potential. Frensley & KrOmer [8] calculated the valence band edges relative
to the mean electrostatic potential in the muffin-tin floor <k = eu — T. As a rough estimate

T £± 'Pco can be used and hence one has

'! " <"" = '?) _ e (2.20)

in (2.19). Especially for contact problems (2.19), (2.20) can be very useful.

3. Contact dipole and equilibrium condition

In the case of a contact between two materials A and B the surface dipoles of the free surfaces
do not exist. But the total system consists of cut-off systems plus an interface dipole layer charge
density 6qo whereby the cut-off values 'Pcoa and 'Pcob are uniquely determined by the two bulk
densities as in section 2. In a Gedankenexperiment the contact can be built up in two steps. In
the first step one sticks the two cut-off systems without changes of their charge distribution.

a IP,,,,, = P,,,b ," b

) /^:,"Ki)\// /" I)

' ' " ,/" " 8qo
Zjjj, Zjg Z I C

Fig 5. Energy diagram (a) cut-off potentials before contacting and (b) in contact when the
interface dipole is present. (C) The corresponding dipole layer charge density.

Then the boundary conditions for the electrostatic potential require 'Pcoa = 'Pcob (Fig. 5a). For
this choice of the energy zeros one has different values of the two chemical potentials µ!,b (relative

to 'Pcoa' 'Pcob )· In the second step (Fig. 5b) this difference has to be compensated by an interface
dipole

P, = P,, = -µf + µ! (3.1)

connected with the occurrence of the deviation (5qo of the total charge density from the sticked
cut-off densities by
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Po = €c) / dz z 6qo(z) (3.2)

(6qo(z) after parallel averaging). Although the idea of equation (3.1) can be found in principle
in the work of Bardeen [15] the quantities in (3.1) (3.2) were not uniquely defined in the past.
Bardeen even assumed that the splitting into surface and bulk contributions is arbitrary. Duke
& Mailhiot [16] used in (3.1) Fermi levels relative to the mean potential < 'p > in the volume (in
our notation —µ ) which is valid for the jellium model only. It should be noted that the cut-off
densities are uniquely determined by (2.13) for a given surface orientation with the bulk densities.
Therefore the "bulk" contributions —µ!,b are determined by (2·9) (2.14). Then the interface

dipole Po is fixed by (3.1). It will be created by the density ®0 (3.2) defined as the deviation
from the cut-off densities in equilibrium.

More specifically, in the next section the metal-semiconductor interface will be considered. But
before doing this we note that often [17-21] the difference of the work functions

"BA = ¢B _ CA (3.3)
is used instead of Pba· Then with (2.9) and (3.1) one obtains

ub, = Pb - P, +( -µ$ + µ!) = Pb - P, + Pb, . (3.4)

(only if the cut-off orientations at the free surfaces are the same as at the interface). Equation
(3.4) shows clearly, that the contact potential defined by (3.3) is a property which is not deter-
mined by the interface alone.

4. Metal-semiconductor contact and Schottky barrier

A. Definition of the Schottky barrier

According to section 3 at a metal-semiconductor contact there occurs the
determined by the difference of the two "bulk" contributions —µb (2.9).

semiconductor surface the interface dipole consists of a contribution Do
redistribution on an atomic scale at the interface and the band bending V)
Thus

interface dipole (3.1)

As in the case of the
arising from a charge
in the semiconductor.

P, - -µ$ + µ: , P, = V, + D, . (4.1)

The energy diagram in the Debye length scale including the interface and the two surfaces is shown

in Fig. 6. As in the case of the semiconductor surface in this Figure one can show only the band

Fig. 6. Energy diagram of

tums sc· m e t, " the metal-semiconductor con-

tact with the two suriaces in the" ¢S ¢1n Debye length scale.

e"v,| " ,:':, "V'!: K'

~ ,;r i

bending V) and not the values Po or Do. For sake of completeness in this Figure also the contact
potential (3.4) is shown. But this is not of direct relevance for the contact region. With (2.19)
one can rewrite the first equation (4.1) as
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Po = -µ$ + '! + Eg - (. (4.2)

Whereas C depends on doping and temperature the gap Eg, is a volume property and µ$ and Ej

depend on the respective value of Pco and hence on the orientation of the interface but they are
completely determined by the bulk electronic structure.

The Schottky barrier according to the methods to measure it [2,22,23] is the minimum energy
for an electron on the metal side to cross the interface into the bulk of the semiconductor. In the
case of a n-type semiconductor (Fig. 6) this barrier is just

'$b = C + V, (4.3)

whereas for p-material one has
< = Eg - Cp — v,p. (4.4)

But the barrier measured via transport is lowered both for electrons and holes due to the image
force correction by about [23]

AV. = " e' ) 2 2,'Na,d (I V, I —kT)"'/' (4.5)
zm

(4mehfco

%EO ,
where Na,d is the effective doping density and ehf and % are the high-frequency and static
dielectric function, respectively. The main theoretical problem is the following. The fundamental
equilibrium condition (4.2) determines Po and its splitting (4.1) into the two contributions V) and

Do being the most serios problem since only V) enters the barrier. We note that the incompati-
bility of the two scales (cf. Section 2 E) causes much confusion in graphical representations of the
contact in the literature [2,14,20].

B. Some general relations for the Schottky barrier

In the past there were numerous attempts to establish phenomenologically connections of the
barrier height dj with quantities visible from experiments [4,23]. Therefore it seems to be senseful

to formulate some exact relations connecting the barrier with other quantities. At first it would
be trivial to denote the position of the Fermi energy in the gap relative to the valence band edge
at the contact by Eo (Fig. 6) giving

¢'b = Eg - E, . (4.6)

Further, one can combine (4.3) with (2.17) and obtaines

Oj, = ¢'s " Xs + (Vo — V,) (4.7)

where the work function, the affinity and the band bending for the free surface occur. If one
inserts (3.3) into (4.7) one can introduce the metal work function into the barrier

¢'b = ¢jm " Xs _ ums + (V, _ V,) · (4.8)

But then the contact potential un,s (3.4) together with (4.1) and (2.15) (2.16) yields

0j, = ¢n:i _ Xs _ (Do — D, + Dm ) · (4.9)

This expression does not contain explicitely the band bending but only the atomic scale dipole con-
tributions both at the interface and the two free surfaces. Finally, from (4.3) and the equilibrium
condition (4.1) (4.2) we obtain

¢1, = -µ$, + '! + Eg - D, (4.10)

containing the two cut-off "bulk" values —µ5 and G, the gap and as the interface property the

atomic scale dipole contribution Do.
Now the relations (4.3), (4·6) - (4.10) for the barrier (n-type semiconductor) will be discussed.

In the definition (4.3) the band bending V) is the only contact property whereas in (4.10) there
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is only Do describing the interface. But both J/o and Do are only a part of the total dipole.
As a result of the screening properties of Poisson's equation there exist a strongly non-linear

dependence between the quantities occuring in the exact relations (4.7) - (4.10). Therefore, non of

these equations expresses a linear relation between ¢1, and one of the other (except VJ quantities

(as e.g. ¢'m in (4.9)). Formally (4.6) is an equation as used to describe pinning [24-27]. But (4.6)

is identical with the definition (4.3) whereas pinning means that the value Eq depends only on

the semiconductor and not on the metal. A large number of papers attempts to estimate metal

independent values Eo for special contacts [2-4]. Similarly, (4.7) is reduced to

¢1, " ¢s _ Xs for V, m V, , (4.11)

that means if the band bending at the interface is the same as at the surface. Then again the
barrier does not depend on the metal. This is e.g. the case for Si-contacts f12,23] with some

metals. The Schottky-Mott theory [17,18] assumes that one has the flat band case 'Ys = 0 at the

free surface and that the contact potential equals the band bending at the interface V) = ums

contrary to (3.4). Then from (4.8) one has

¢1, " ¢m _ Xs · (4.12)

The correct condition which leads to (4.12) is seen from (4.9), namely Do = D,s _ Dm , that means

a superposition of the atomic scale dipoles but not necessarily the flat band case. Equations (4.7)
to (4.9) contain not only interface but also surface properties. But theory should prefer expres-

sions describing the contact alone as (4.3), (4.6) and (4.10).

Measured barrier values are compiled in several papers [2,4,22,23] and there exist several at-

tempts to systematize them phenomenologically. One of these expressions is

¢'b = S' ¢m + C' (4.13)

where metal properties are involved only via the metal work function. In the Mott version [17,18]

one has S' = 1. According to [28] only for CdS with C'=4 eV reasonable results are obtained.

A systematic application [20,29] of (4.13) shows mainly that for ionic semiconductors S' is large

and hence the metal (or its work function) influences significantly the barrier whereas for covalent

semiconductors ¢'m is less important (S' small), see also [30]. With the relation

¢1 = S Em + C (4.14)

introduced by Mead [22] where Em is the metal electronegativity and S and C depend only on

the semiconductor in some cases the data can be described better. Also in this cases one obtaines

S < 0.2 for covalent semiconductors and larger S for ionic semiconductors [31,32]. There does not

exist a serious theoretical fundation for the connection between the atomic property Em and the
bulk chemical potential —µSl entering (4.10). Empirical relations connecting Em and ¢m can be

found in [33].

There exist further numerous attempts to express the barrier by semiconductor quantities alone
[2-4]. Indeed for several semiconductors in contact with diiferent metals this is possible. According

to [34] the Fermi level at the interface for group IV semiconductors and for III-V semiconductors

(with zincblende structure) should lie Eg / 3 over the valence band edge and hence

¢'b = : Eg and ¢: = i Eg . (4.15)

On the other hand according to Tersof [35] for the same semiconductors with p-doping the Fermi

level lie near the middle of the indirect gap. Other authors [36] claim that the position of the

Fermi level is determined only by the anion electronegativity. Although such empirical rules are

well suited to systematically describe barriers for different groups of contacts they give only little

insight in the mechanism determining the barrier.
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C. Relations of the Cowley & Sze. type'

A special approximation derived originally by Cowley & Sze [20] was often used and modified

[37,38]. Here we will derive an expression of this type based on the formulation given above and

with a minimum of additional assumptions. Our starting point are the exact equations (4.10) or

(4.9) and further the atomic scale interface dipole is considered. Formally one can expand Do as

Do = Don + a ( V) _ 'Yon ) + ··· (4.16)

where the index n denotes a situation deviating slightly from the actual equilibrium condition.
' By conviniently defining this state the linear expansion coefficient a will be determined. It is

assumed that the state n is realized if the exponentially decaying semiconductor gap states are

occupied such that the missing of the valence band states due to the boundary condition at the

interface are compensated (local neutrality). The distance of the highest occupied gap state from

the valence band edge will be defined as ¢n. Then V) _ 'Yon is just the difference between the

actual Fermi energy to the valence band, Eg " ¢j (see Fig. 6) and ¢n :

V, - V,,, = Eg _ 'i'b - ¢'n " 6E . (4.17)

For a smooth 2D density of gap states N,JE) the number of charged gap states per unit area is

then ncs = N,,(Ef ) '5E. Exponentially decreasing gap states [39] with decay length q_' yield the

contribution
4 71" E2 1 2

D = — _ ncs 3 ncs = No(E1) 6E , €2 ± e (4.18)
O, CS Es(q) 2q 4 7r EO

to Do. Here the dielectric constant for the wave number q has to be used (for a refinement see
[14]). The charged gap states will be screened in the metal by a charged layer with an extension

of roughly j3_' m ao Bohr radius) and their density tiliin gives

D,, m - 4;"*m . (4.19)

Further «sc is screened by the space charge layer with density <i!tj. But since in practically all
cases *1 (< 10'1 cm"2) is negligable one has aiin '¥ _ *sc · Then one can add (4.18), (4.19) as

the deviation (4.16) (4.17)

Do _ Don = Do, cs + Do, m ="a 6E (4.20)

a=4iui' 6 N,(Ej) ) 6 = (2q:(q) + :) ' (4.21)

Inserting (4.20) with (4.17) in (4.9) or (4.10) one can solve for the barrier as
¢1, = 1 : a (¢jj _ Don + a ( Eg - ¢n )) (4.22)

¢1,1 " _ µf, + '! - Eg = ¢m - X, + D, - Dm . " (4.23)

The a-dependence of (4.22) was derived in [20] but '41 " Don was not given correctly there.

Tejedor, Flores & Louis [14] derived (4.22) using a special model. But the first equation (4.23)

is missing there. For small a the determination of ¢1,1 and of the value Don corresponding

to a non-equilibrium situation would be most difficult. But one can estimate a (4.21) using
(2 g)"' m 1.5. ..6.6 A and No(ES) m (2. ..5) · 10" m"' cV"' [1JJ,37,38] and t'(q) = 1.5. ..3 [38].

Then we obtain a m 4 . . . 50 where for covalent or narrow-gap semiconductors one has a > 10 and

only for ionic semiconductors smaller values occur. For a >> 1 (4.22) is reduced to % m Eg _ ¢'n

approaching a pinning situation. The problem would then be the determination of '$n which de-

pends on the matching of the gap states with the metal wave functions. On the other hand from

(4.22) (4.23) an apparent proportlionality ¢'1, " (I + Cy)"1 ¢m + . .. is obtained resembling (4.13).
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As in (4.13) the proportionality factor (I + Cy)"1 is large for ionic semiconductors with smallest a.

But also the other terms in (4.22) depend nonlinearly on em which is the reason that (4.13) can

be useful only accidentally.

5. Heterojunctions and band offsets

A. Definition of the band offset

At semiconductor-semiconductor contacts also an interface dipole Po is built up in order to equlilize
the chemical potentials. With the notation for differences AE ee E2 — E, (3.1) yields using (2.19)
a condition for Po

Po = -Lk! - AEg + ^C. (5.1)

The interface dipole consists of the difference of the band bending V,, _ \/02 (Fig. 7) and an
additional contribution Do due to charge redistribution on an atomic scale at the interface

Po = Do - AV, (5.2)

where band bending is positiv if the bands are bent upwards (Fig. 7). In many papers concerning
microscopic theories which will be discussed in Section B no band bending and no equilibrium
condition occur.

Fig. 7. Energy schema of a heterojunction.
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As in the case of Schottky contacts one is interested in determining the relative position
of the band structures of the two materials near the interface. The quantity characteristic for
heterojunctions is the band offset. The band offsets are defined by

AEu = Eu, - E,,, , AE, = ^EU + LLEg . (5.3)

where the band edges are measured near the interface on the same energy scale (Fig. 7). Now the
constant chemical potential can serve as an eriergy zero so that (cf. Fig. 7)

AEu = ^C - AEg + AV,. (5.4)

Thus, the band offset can be calculated already if the so called "built-in potential" ^Vo is known.
On the other hand comparing (5.2) and (5.4) one can eliminate both the band bending Vo1 and
\/02. Together with (5.1) one gets

AE, = ^e! + D, . (5.5)
From (5.5) one may suppose that the only interface property influencing the band offset is the
dipole Do at the interface. Nevertheless the original problem of determining Do from (5.2) re-
mains since the band bending and the dipole Do are indeed coupled.
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B. Microscopic concepts

Most of the concepts do not start with thermodynamic equilibrium and alignment of chemical

potentials due to band bending (Fig. 7 and (5.4)). So, only the interface region extended over
several A is considered. First "absolute" reference levels R. are introduced. Then the valence

band edge %i relative to this reference level Rj is caicuiated for each semiconductor

€ . = E . - R. . (5.6)
UZ m I

After equilizing the reference levels R1 and R2 appropriate to

Do = R2 _ R1 (5.7)

where Do is a dipole due to charge redistributions at the interface the difference of the valence
band edges ^Eu (band offset) is obtained with (5.6) (5.7) as

AEu = %2 " EU1 + Do · (5.8)

The "absolute" valence band edges eu should be determined by bulk properties only. Using as
the reference the intrinsic Fermi level as was done by Adams & Nussbaum [40] one gets ^Eu =
^¢i _ AEg + Do in contradiction to (5.4). Other microscopic concepts did not consider the

chemical potentials. Harrison [41] constructed the crystal potential simply by superimposing
atomic orbitals. Then the potential at infinity is regarded as reference and the valence band
edges calculated by tight-binding theory have to be inserted in (5.8) neglecting any dipole Do.
Some corrections were made subsequently. Due to Ruan & Ching [42] Harrison's theory coincides
with the electron affinity rule established by Anderson [19]. Actually, setting R = p(oo) yields
eu = "¢pe and hence AEu = _^Xs — AEg for Do = 0. But Anderson's original idea is not

a microscopic concept as shown below (Section E). According to Tersoff [7] the effective midgap
energies R = Eb of the two semiconductors have to be identical to prevent any induced dipole Do
produced mainly by charged gap states. Since Eb is measured relativ to the valence band edge (
eu = _EB ) the valence band offset is given by

^Eu = — ^Eb . (5.9)

Actually Tersoff's assumption Do = 0 did not lead to (5.9) as can be seen from (5.5) since then
Lkt would be the band offset contrary to (5.9). Frensley & KrOmer [8] took the mean interstitial

potential ijj as reference. Their valence band energies <k mentioned already in Section 2 used to

predict the band ofl'set in (5.8) yield (neglecting Dq) only moderate agreement with experiment
^Eu = ^efi'"

. U · (5.10)They also estimated a correction Do but this did not improve their results.
These microscopic concepts do not contain band bending which is a part of the interface dipole

(5.2). But comparing (5.8) and (5.5) one sees a similarity. (Note that (5.5) was derived using
chemical potentials and thermodynamic equilibrium which are both absent in microscopic theories
desribed above.) Thus the microscopic concept is correct provided that one chooses the reference
levels 'Pco defined uniquely relativ to the band structure. However from the failure of the Frensley
& KrOrner attempt one learns that the contribution Do is not negligible. On the other hand the
success of Tersof's approach shows that charged gap states are important. But any 'dipole Dus
produced by these charged gap states can only be calculated if band bending is considered.

C. Dipole due to charged gap states and band offset

It will be assumed that the dipole Dq arises from charged gap states only, Do = Dus. Every
deviation 6E of the chemical potential from a neutrality level en will induce a total charge nus
at the surface. Measuring ¢'n relative to the valence band edge Eu one has

Eg - G - V, = ¢'n + 6E (5.11)
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and the induced total charge treated in linear approximation equals

"U, = N,,, 6E (5.12)

where /Yus is the density of gap states near en . The whole system containing two interface regions
of the semiconductors and two space charge layers with total charge nd must be neutral

%1 + nus1 + nus2 + %2 = 0 · (5.13)

Introducing effectiv extensions iS. of the gap states on both sides of the mathematical interface
ithe potential drop due to charged gap states is

Do = Dus = —47rE2 { 61 nusl " 62 nus2 ] ' (5.14)

Using (5.14) with (5.12), (5.13) and assuming that a small correction due to the total charge

( nd1 " %2 ) can be neglected we obtain

Du, = — a [ 6E1 — 6E2 ] , a ee 4T€2(61 + 62 )1/ [ N:Si + N:s2 j ' (5.15)

Note that the chemical potential is then always situated between the neutrality levels ¢n·
The dipole (5.15) in the band offset (5.5) is according to (5.11) proportional to

[ 6E, - 6E, I = ^C - AEg + AV, + Mn = ^Eu + Mn (5.16)

where in the second step (5.4) is used. Thus indeed the band bending is important for the dipole

Do but it can be eliminated so that the dipole becomes itself proportional to the band offset. Now
combining (5.5) with (5.15), (5.16) one can solve for the band offset

^Eu _ 1 : a l!"! _ 1 : a Mn · (5.17)

where at (5.15) depends on the contact. It is clearly seen that the actual limit giving TersoffL
result is a ~ do whereas cv ~ 0 yields just a result similar to that of Frensley & KrOmer. With
(5.17) both the dipole due to the charged gap states (contrary to Frensley & KrOmer) and the
equilibrium condition (contrary to Tersoflj are taken into account.

D. Evaluation of band offsets
To evaluate (5.17) one needs the bulk valence band edge Ej, the neutrality levels ¢'n and a (5.15)
characterising the gap states. Here for a first estimate we use the Frensley & KrOmer values £EK

according to (2.20) and ¢'n is identified with the effective midgap value Eb of Tersoff. For a.

first simplified estimate we use a common value cv for all contacts. The effective extensions iS.
I

of the gap states are given by the characteristic length of the virtuals [39] reduced by effective
screening [38]. One yields approximately 6j £± 1.5 A. The density of gap states was selected to be

/Yus m 7.5 · 1017 m-2 eV"1 (in between Schottky contacts and free surfaces). Then one has a = 2

and
AE, " : 1 '::" _ '::" ] + i 1 E,, - E,, I . (5.18)

With the available data we calculated the valence band offsets and their errors presented in Tab. 1.
The experimental values are from [5] and the deviation of Tersoff"s band offsets is also shown for
comparision. (InAs was not considered since Eb > Eg.) Our results are significantly better than
Tersoff's. Both the averaged and the maximum error were decreased by about 60 meV. This is
really important since Tersoff improved the values from the electron affinity rule in average by
36 meV bearing in mind that the maximum error of the electron affinity rule is however 60 meV.
Although there is a large scattering [5] of the experimental values the results listed in Tab. 1
indicate the importance to correctly account for the equilibrium condition as done here.

'\

'L
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Table I: Experimental and calculated band offsets (eV, ' * ' are averaged values)

sem.2 sem.1 Lk:" -^Eb ^eS"") ^E:"P' -AEb -^E:"P' ^eS"") - ^E:"P'

Si Ge 0.09 -0.18 -0.09 -0.28 * -0.10 -0.19
GaP 0.96 0.45 0.62 0.8 0.35 0.18
GaAs 0.80 0.14 0.36 0.05 -0.09 -0.31
GaSb 0.73 -0.29 0.05 0.05 0.34 0.00
InP 1.42 0.40 0.74 0.57 0.17 -0.17
ZnSe 1.91 1.34 1.53 1.25 -0.09 -0.28
ZnTe 1.58 0.48 0.85 0.85 0.37 0.00
CdTe 1.74 0.49 0.91 0.75 0.26 -0.16

Ge AIAs 0.71 0.87 0.82 0.86 * -0.01 0.04
GaP 0.87 0.63 0.71 0.8 0.17 0.09
GaAs 0.71 0.32 0.45 0.49 * 0.17 0.04
GaSb 0.64 -0.11 0.14 0.2 0.31 0.06
InP 1.33 0.58 0.83 0.64 0.06 -0.19
ZnSe 1.82 1.52 1.62 1.41 * -0.12 -0.22
ZnTe 1.49 0.66 0.94 0.95 0.29 0.01
CdTe 1.65 0.67 1.00 0.85 0.18 -0.15

GaAs AIAs 0.00 0.55 0.37 0.34 * -0.21 -0.03
ZnSe 1.11 1.20 1.17 1.03 * -0.17 -0.14

GaSb AlSb 0.05 0.38 0.27 0.4 0.02 0.13

averaged deviation: 0.183 0.126
maximum deviation: 0.37 -0.31

E. Band offsets and electron affinity

Since Anderson's theory [19] for heterojunctions is analogous with the Schottky-Mott theory the
following discussion will be very similar to the one in section 4B. Starting with (5.5) one obtains
with (2.18) (2.19)

AE,, = -^X, — AEg + ( D,, + D,, - D,, ) . (5.19)

According to Anderson [19] the valence band offset is given by ^Eu = —Axs — AEg . Thus
Anderson's result is valid if Do = DSl " Ds2. The only moderate agreement with experiment
shows that this is usually not realized. Equation (5.19) can already be found in the work of Flores
& Tejedor [43]. But it was first derived by Mailhiot & Duke [13] under some limiting assumptions.
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